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Abstract

This thesis presents Coup, a technique that reduces the cost of updates in shared
memory systems. In particular, it describes a new cache coherence protocol, MEUSI,
and evaluates its performance under simulation in zsim. MEUSI extends the MESI
protocol to allow data to be cached in a new update-only state, reducing both block-level
thrashing and on-chip network traffic under many parallel workflows. Coup permits
both single-word and multi-word commutative data operations, which are implemented
as x86-64 ISA extensions. To evaluate single-word instructions, this thesis presents
a case study of a new reference counting scheme, and for multi-word commutative
operations, this thesis describes the design of a commutative memory allocator. Coup
and MEUSI confer significant benefits to the reference counting scheme and the
memory allocator, both in terms of performance and ease of programming.
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Chapter 1

Introduction

Cache coherence is pervasive in shared-memory systems. However, current coherence

protocols cause significantly more communication and serialization than needed,

especially with frequent updates to shared data. For example, consider a shared counter

that is updated by multiple threads. On each update, the updating core first fetches

an exclusive copy of the counter’s cache line into its private cache, invalidating all

other copies, and modifies it locally using an atomic operation such as fetch-and-add,

as shown in Fig. 1-1a. Each update incurs significant traffic and serialization: traffic

to fetch the line and invalidate other copies, causing the line to ping-pong among

updating cores; and serialization because only one core can perform an update at a

time.

Prior work has proposed hardware and software techniques to reduce traffic and

serialization of updates in parallel systems. In hardware, prior work has mainly focused

on remote memory operations (RMOs) [58,59, 86,96]. RMO schemes send updates to

a single memory controller or shared cache bank instead of having the line ping-pong

among multiple private caches, as shown in Fig. 1-1b. Though RMOs reduce the cost

of updates, they still cause significant global traffic and serialization, and often make

reads slower (as remote reads may be needed to preserve consistency [69,86]).

In this work we leverage two key insights to further reduce the cost of updates.

First, many update operations need not read the data they update. Second, update

operations are often commutative, and can be performed in any order before the
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data is read. For instance, in our shared-counter example, multiple additions from

different threads can be buffered, coalesced, and delayed until the line is next read.

Commutative updates are common in other contexts beyond this simple example.

Two obstacles prevent these optimizations in current protocols. First, conventional

coherence protocols only support two primitive operations, reads and writes, so

commutative updates must be expressed as a read-modify-write sequence. Second,

these protocols do not decouple read and write permissions. Instead, they enforce the

single-writer, multiple-reader invariant : at a given point in time, a cache line may

only have at most one sharer with read and write permission, or multiple sharers with

read-only permission [33,87].

We propose Coup (chapter 3), a general technique that extends coherence protocols

to allow local and concurrent commutative updates. Coup decouples read and write

permissions, and introduces commutative-update primitive operations, in addition

to reads and writes. With Coup, multiple caches can acquire a line with update-

only permission, and satisfy commutative-update requests locally, by buffering and

coalescing update requests. On a read request, the coherence protocol gathers all the

local updates and reduces them to produce the correct value before granting read

permission. For example, multiple cores can concurrently add values to the same

counter. Updates are held in their private caches as long as no core reads the current

value of the counter. When a core reads the counter, all updates are added to produce

the final value, as shown in Fig. 1-1c.

Coup confers significant benefits over RMOs, especially when data receives several

consecutive updates before being read. Moreover, Coup maintains full cache coherence

and does not affect the memory consistency model. This makes Coup easy to apply

to current systems and applications. We demonstrate Coup’s utility by applying

it to improve the performance of single-word update operations, which are currently

performed with expensive atomic read-modify-write instructions.

Coup completes a symmetry between hardware and software schemes to reduce

the cost of updates. Broadly, software techniques use either delegation or privatization.

Delegation schemes send updates to a single thread [39, 40]. Privatization schemes

14
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Figure 1-1: Example comparing the cost of commutative updates under three schemes.
Two cores add values to a single memory location, A. (a) With conventional coherence
protocols, A’s fetches and invalidations dominate the cost of updates. (b) With remote
memory operations, cores send updates to a fixed location, the shared cache in this
case. (c) With Coup, caches buffer and coalesce updates locally, and reads trigger a
reduction of all local updates to produce the actual value.
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lower the cost of commutative updates by using thread-local variables [37,45,76]. Each

thread updates its local variable, and reads require reducing the per-thread variables.

Just as remote memory operations are the hardware counterpart to delegation, Coup

is the hardware counterpart to privatization. Coup has two benefits over software

privatization. First, transitions between read-only and update-only modes are much

faster, so Coup remains practical in many scenarios where software privatization

requires excessive synchronization. Second, privatization’s thread-local copies increase

memory footprint and add pressure to shared caches, while Coup does not.

In this work, we make the following contributions:

∙ We present Coup, a technique that extends coherence protocols to support

concurrent commutative updates to shared state (chapter 3). We apply Coup

to extend MSI and MESI, but note that Coup could be used beyond hardware

cache coherence (e.g., software coherence protocols in distributed systems).

∙ We identify several update-heavy parallel applications where existing hardware

and software techniques have substantial shortcomings (chapter 4), and discuss

how Coup addresses them.

∙ We present an implementation of Coup that accelerates single-word commutative

updates (chapter 5). This implementation adds update-only instructions, extends

the coherence protocol, and requires simple ALUs in cache controllers to reduce

partial updates.

∙ We evaluate Coup under simulation, using single- and multi-socket systems

(chapter 6). At 128 cores, Coup improves the performance of update-heavy

benchmarks by 4%–2.4×, and reduces traffic by up to 20×.

∙ The design and implementation of a commutative memory allocator that uses

commutative set insertion/removal operaitons is described.

In summary, Coup shows that extending coherence protocols to leverage the

semantics of commutative updates can substantially improve performance without

sacrificing the simplicity of cache coherence.
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Chapter 2

Background

We now discuss prior hardware and software techniques that reduce the cost of updates

to shared data.

2.1 Hardware Techniques

Remote memory operations (RMOs) are the most closely related scheme to Coup.

Rather than caching lines to be updated, update operations are sent to a fixed

location. The NYU Ultracomputer [58] proposed implementing atomic fetch-and-

add using adders in network switches, which could coalesce requests from multiple

processors on their way to memory. The Cray T3D [64], T3E [86], and SGI Origin [72]

implemented RMOs at the memory controllers, while TilePro64 [59] and recent

GPUs [91] implement RMOs in shared caches. Prior work has also studied adding

caches to memory controllers to accelerate RMOs [96], and proposed data-parallel

RMOs [35].

Coup has two key advantages over remote memory operations. First, while remote

operations avoid ping-ponging cache lines, they still require sending every update to a

shared, fixed location, causing global traffic. Remote operations are also limited by

the throughput of the single updater. For example, in Fig. 1-1b, frequent remote-add

requests require the shared cache to perform additions near saturation. By contrast,

Coup buffers and coalesces updates in local caches. Second, remote operations are
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challenging to integrate in cache-coherent systems without affecting the consistency

model, as remote updates and cacheable reads and writes follow different paths through

the memory hierarchy [69].

Note that Coup’s advantages come at the cost of a more restricted set of operations:

Coup only works with commutative updates, while RMOs support non-commutative

operations, such as fetch-and-add and compare-and-swap. Also, Coup significantly

outperforms RMOs only if data is reused (i.e., updated or read multiple times before

switching between read- and update-only modes). This is often the case in real

applications (chapter 4).

2.2 Software Techniques

Conventional shared-memory programs update shared data using atomic operations

for single-word updates, or normal reads and writes with synchronization (e.g., locks

or transactions) for multi-word updates. Many software optimizations seek to reduce

the cost of updates. Though often presented in the context of specific algorithms, we

observe they are instances of two general techniques: delegation and privatization. We

discuss these techniques here, and present specific instances in chapter 4.

Delegation schemes divide shared data among threads and send updates to the

corresponding thread, using shared-memory queues [39] or active messages [84, 89].

Delegation is common in architectures that combine shared memory and message

passing [84,92] and in NUMA-aware data structures [39,40]. Delegation is the software

counterpart to RMOs, and is subject to the same tradeoffs: it reduces data movement

and synchronization, but incurs global traffic and serialization.

Privatization schemes exploit commutative updates. These schemes buffer updates

in thread-private storage, and require reads to reduce these thread-private updates to

produce the correct value. Privatization is most commonly used to implement reduction

variables efficiently, often with language support (e.g., reducers in MapReduce [50],

OpenMP pragmas, and Cilk Plus hyperobjects [56]). Privatization is generally used

when updates are frequent and reads are rare.
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Privatization is the software counterpart to Coup, and is subject to similar tradeoffs:

it is restricted to commutative updates, and works best when data goes through long

update-only phases without intervening reads. Unlike Coup, privatization has two

major sources of overhead. First, while Coup is about as fast as a conventional

coherence protocol if a line is only updated once before being read (Fig. 1-1c), software

reductions are much slower, making finely-interleaved reads and updates inefficient.

Second, with 𝑁 threads, privatized variables increase memory footprint by a factor

of 𝑁 . This makes naive privatization impractical in many contexts (e.g., reference

counting). Dynamic privatization schemes [45, 76, 93] can lessen space overheads, but

cause additional time overheads.

These overheads often make privatization underperform conventional updates.

For instance, Jung et al. [62] propose parallel histogram implementations using both

atomic operations and privatization. These codes process a set of input values, and

produce a histogram with a given number of bins. Jung et al. note that privatization

is desirable with few output bins, but works poorly with many bins, as the reduction

phase dominates and hurts locality. Fig. 1-2 shows this tradeoff. It compares the

performance of histogram implementations using atomic fetch-and-add, privatization,

and Coup, when running on 64 cores (see chapter 6 for methodology details). In

this experiment, all schemes process a large, fixed number of input elements. Each

line shows the performance of a given implementation as the number of output bins

(x -axis) changes from 32 to 8K. Performance is reported relative to Coup’s at 32

bins (higher numbers are better). While the costs of privatization impose a delicate

tradeoff between both software implementations, Coup robustly outperforms both.
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Chapter 3

Extending Cache Coherence to

Support Commutative Updates

In this chapter, we describe Coup in two steps. First, in Sec. 3.1, we present the

main concepts and operation of Coup through a concrete, simplified example. Then,

in Sec. 3.2, we generalize Coup to other coherence protocols, operations, and cache

hierarchies.

3.1 Coup Example: Extending MSI

To introduce the key concepts behind Coup, we first consider a system with a single

level of private caches, kept coherent with the MSI protocol. This system has a single

shared last-level cache with an in-cache directory. It implements a single commutative

update operation, addition. Finally, we restrict this system to use single-word cache

blocks. We will later generalize Coup to remove these restrictions.

3.1.1 Structural changes

Coup requires a few additions and changes to existing hardware structures, which we

describe below. Fig. 3-1 summarizes these changes.
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Figure 3-1: Summary of additions and modifications needed to support Coup.

Commutative-update instructions: Coup needs a way for software to convey

commutative updates, mainly because conventional atomic instructions (e.g., fetch-

and-add) often return the latest value of the data they update. For performance

reasons, we use additional instructions. In this case, we add a commutative addition

instruction, which takes an address and a single input value, and does not write to

any register. Lower-performance implementations could use cheaper ways to convey

updates, such as memory-mapped registers.

Update-only permissions and requests: Coup extends MSI with an additional

state, update-only (U), and a third type of request, commutative update (C), in

addition to conventional reads (R) and writes (W). We call the resulting protocol

MUSI. Fig. 3-2 shows MUSI’s state-transition diagram for private caches. MUSI

allows multiple private caches to hold read-only permission to a line and satisfy read

requests locally (S state); multiple private caches to hold update-only permission to a

line and satisfy commutative-update requests locally (U state); or at most a single

private cache to hold exclusive permission to a line and satisfy all types of requests

locally (M state). By allowing M to satisfy commutative-update requests, interleaved

updates and reads to private data are as cheap as in MSI.

MUSI’s state-transition diagram in Fig. 3-2 shows a clear symmetry between the

S and U states: all transitions caused by R/C requests in and out of S match those

caused by C/R requests in and out of U. We describe MUSI’s operation in detail later.
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Figure 3-2: State-transition diagrams of MSI and MUSI protocols. For clarity, diagrams
omit actions that do not cause a state transition (e.g., R requests in S).

Directory state: Conventional directories must track both the sharers of each line

(using a bit-vector or other techniques [41, 82, 94]), and, if there is a single sharer,

whether it has exclusive or read-only permission. In Coup, the directory must track

whether sharers have exclusive, read-only, or update-only permission. The sharers

bit-vector can be used to track both multiple readers or multiple updaters, so MUSI

only requires one extra bit per directory tag.

Reduction unit: Though cores can perform local updates, the memory system

must be able to perform reductions. Thus, Coup adds a reduction unit to the shared

cache, consisting of an adder in this case.

3.1.2 Protocol operation

Performing commutative updates: Both the M and U states provide enough

permissions for private caches to satisfy update-only requests. In M, the private cache
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has the actual data value; in U, the cache has a partial update. In either case, the

core can perform the update by atomically reading the data from the cache, modifying

it (by adding the value specified by the commutative add instruction) and storing the

result in the cache. The cache cannot allow any intervening operations to the same

address between the read and the write. This scheme can reuse the existing core logic

for atomic operations. We assume this scheme in our implementation, but note that

alternative implementations could treat commutative updates like stores to improve

performance (e.g., using update buffers similar to store buffers and performing updates

with an ALU at the L1).

Entering the U state: When a cache has insufficient permissions to satisfy an

update request (I or S states), it requests update-only permissions to the directory.

The directory invalidates any copies in S, or downgrades the single copy in M to U, and

grants update-only permission to the requesting cache, which transitions to U. Thus,

there are two ways a line can transition into the U state: by requesting update-only

permission to satisfy a request from its own core, as shown in Fig. 3-3a; or by being

downgraded from M, as shown in Fig. 3-3b.

When a line transitions into U, its contents are always initialized to the identity

element, 0 for commutative addition. This is done even if the line had valid data. This

avoids having to track which cache holds the original data when doing reductions.

However, reductions require reading the original data from the shared cache.

Leaving the U state: Lines can transition out of U due to either evictions or read

requests.

Evictions initiated by a private cache (to make space for a different line) trigger a

partial reduction, shown in Fig. 3-3c: the evicting cache sends its partial update to

the shared cache, which uses its reduction unit to aggregate it with its local copy.

The shared cache may also need to evict a line that private caches hold in the U

state. This triggers a full reduction: all caches with update-only permissions are sent

invalidations, reply with their partial updates, and the shared cache uses its reduction
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unit to aggregate all partial updates and its local copy, producing the final value.

Finally, read requests from any core also trigger a full reduction, as shown in

Fig. 3-3d. Depending on the latency and throughput of the reduction unit, satisfying

a read request can take somewhat longer than in conventional protocols. Hierarchical

reductions can rein in reduction overheads with large core counts (Sec. 3.2). In our

evaluation, we observe that reduction overheads are small compared to communication

latencies.

3.2 Generalizing Coup

We now show how to generalize Coup to support multiple operations, larger cache

blocks, other protocols, and deeper cache hierarchies.

Multiple operations: Formally, Coup can be applied to any commutative semi-

group (𝐺, ∘). For example, 𝐺 can be the set of 32-bit integers, and ∘ can be addition,

multiplication, 𝑎𝑛𝑑, 𝑜𝑟, 𝑥𝑜𝑟, 𝑚𝑖𝑛, or 𝑚𝑎𝑥.

Supporting multiple operations in the system requires minor changes. First,

additional instructions are needed to convey each type of update. Second, reduction

units must implement all supported operations. Third, the directory and private

caches must track, for each line in U state, what type of operation is being performed.

Fourth, Coup must serialize commutative updates of different types, because they do

not commute in general (e.g., + and * do not commute with each other). This can be

accomplished by performing a full reduction every time the private cache or directory

receives an update request of a different type than the current one.

Larger cache blocks: Supporting multi-word cache blocks is trivial if (𝐺, ∘) has an

identity element (formally, this means (𝐺, ∘) is a commutative monoid). The identity

element produces the same value when applied to any element in 𝐺. For example, the

identity elements for addition, multiplication, 𝑎𝑛𝑑, and 𝑚𝑖𝑛 are 0, 1, all-ones, and the

maximum possible integer, respectively.
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All the operations we implement in this work have an identity element. In this

case, it is sufficient to initialize every word of the cache block to the identity element

when transitioning to U. Reductions perform element-wise operations even on words

that have received no updates. Note this holds even if those words do not hold data of

the same type, because applying ∘ on the identity element produces the same output,

so it does not change the word’s bit pattern. Alternatively, reduction units could skip

operating on words with the identity element.

In general, not all operations may have an identity element. In such cases, the

protocol would require an extra bit per word to track uninitialized elements.

Other protocols: Coup can extend protocols beyond MSI by adding the U state.

Fig. 3-4 shows how MESI [78] is extended to MEUSI, which we use in our evaluation.

Note that update requests enjoy the same optimization that E introduces for read-only

requests: if a cache requests update-only permission for a line and no other cache has

a valid copy, the directory grants the line directly in M.

Deeper cache hierarchies: Coup can operate with multiple intermediate levels

of caches and directories. Coup simply requires a reduction unit at each intermediate

level that has multiple children that can issue update requests. For instance, a system

with private per-core L1s and L2s and a fully shared L3 only needs reduction units

at L3 banks. However, if each L2 was shared by two or more L1Ds, a reduction unit

would be required in the L2s as well.

Hierarchical organizations lower the latency of reductions in Coup, just as they

lower the latency of sending and processing invalidations in conventional protocols:

on a full reduction, each intermediate level aggregates all partial updates from its

children before replying to its parent. For example, consider a 128-core system with a

fully-shared L4 and 8 per-socket L3s, each shared by 16 cores. In this system, a full

reduction of a line shared in U state by all cores has 8 + 16 = 24 operations in the

critical path—far fewer than the 128 operations that a flat organization would have,

and not enough to dominate the cost of invalidations.
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Other contexts: From now on, we focus on single- and multi-word atomic operations

and hardware cache coherence, but note that Coup could apply to a variety of other

contexts. For example, Coup could be used in software coherence protocols (e.g., in

distributed shared memory).

3.3 Coherence and Consistency

Coup maintains cache coherence and does not change the consistency model.

Coherence: A memory system is coherent if, for each memory location, it is possible

to construct a hypothetical serial order of all operations to the location that is consistent

with the results of the execution and that obeys two invariants [48]:

1. Operations issued by each core occur in the order in which they were issued to

the memory system by that core.

2. The value returned by each read operation is the value written to that location

in the serial order.

In Coup, a location can be in exclusive, read-only, or update-only modes. The

baseline protocol that Coup extends already enforces coherence in and between

exclusive and read-only modes. In update-only mode, multiple cores can concurrently

update the location, but because updates are commutative, any serial order we choose

produces the same execution result. Thus, the first invariant is trivially satisfied.

Moreover, transitions from update-only to read-only or exclusive modes propagate

all partial updates and make them visible to the next reader. Thus, the next reader

always observes the last value written to that location, satisfying the second property.

Therefore, Coup maintains coherence.

Consistency: As long as the system restricts reorderings of memory operations

as strictly for commutative updates as it does for stores, Coup does not affect the

consistency model. In other words, from the perspective of memory consistency, it is

sufficient for the memory system to consider commutative updates as being equivalent

to stores. For instance, by having store-load, load-store, and store-store fences apply to
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commutative updates as well, systems with relaxed memory models need not introduce

new fence instructions.
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Figure 3-4: State-transition diagram of the MEUSI protocol, used in our evaluation.
Just as MESI grants E to a read request if a line is unshared, MEUSI grants M to the
first update request if a line is unshared. For clarity, the diagram omits actions that
do not cause a state transition (e.g., C requests in U).
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Chapter 4

Motivating Applications

In this work, we apply Coup to accelerate single-word updates to shared data, though

we also providing a design and implementation for a memory allocator that uses multi-

word commutative set operations in chapter 7. To guide our design, we first study

under what circumstances Coup is beneficial over state-of-the-art software techniques,

and illustrate these circumstances with specific algorithms and applications.

As discussed in chapter 2, Coup is the hardware counterpart to privatization.

Privatization schemes create several replicas of variables to be updated. Each thread

performs its updates on one of these replicas, and threads synchronize to reduce all

partial updates into a single location before the variable is read.

In general, Coup outperforms prior software techniques if either of the following

two conditions holds:

∙ Reads and updates to shared data are finely interleaved. In this case, software

privatization has large overheads due to frequent reductions, while Coup can

move a line from update-only mode to read-only mode at about the same cost

as a conventional invalidation. Thus, privatization needs many updates per core

and data value to amortize reduction overheads, while Coup yields benefits

with as little as two updates per update-only epoch.

∙ A large amount of shared data is updated. In this case, privatization significantly

increases the memory footprint and pressure on shared caches.

We now discuss several parallel patterns and applications that have these properties.
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4.1 Separate Update- and Read-Only Phases

Several parallel algorithms feature long phases where shared data is either only updated

or only read. Privatization techniques naturally apply to these algorithms.

Reduction variables: Reduction variables are objects that are updated by multiple

iterations of a loop using a binary, commutative operator (a reduction operator) [79,80],

and their intermediate state is not read. Reduction variables are natively supported

in parallel programming languages and libraries such as HPF [67], MapReduce [50],

OpenMP [52], TBB [60], and Cilk Plus [56]. Prior work in parallelizing compilers and

runtimes has developed a wide array of techniques to detect and exploit reduction

variables [61, 79, 80]. Reductions are commonly implemented using parallel reduction

trees, a form of privatization. Each thread executes a subset of loop iterations

independently, and updates a local copy of the object. Then, in the reduction phase,

threads aggregate these copies to produce a single output variable.

Reduction variables can be small, for example in loops that compute the mean

or maximum element from a set of values. In these cases, the reduction variable is a

single scalar, the reduction phase takes negligible time, and Coup would not improve

performance much over software tree reductions.

Reduction variables are often larger structures, such as arrays or matrices. For

example, consider a loop that processes a set of input values (e.g., image pixels) and

produces a histogram of these values with a given number of bins. In this case, the

reduction variable is the whole histogram array, and the reduction phase can dominate

execution time [62], as shown in Fig. 1-2. Yu and Rauchwerger [93] propose several

adaptive techniques to lower the cost of reductions, such as using per-thread hash

tables to buffer updates, avoiding full copies of the reduction variable. However, these

techniques add time overheads and must be applied selectively [93]. Instead, Coup

achieves significant speedups by maintaining a single copy of the reduction variable in

memory, and overlapping the loop and reduction phases.

Reduction variables and other update-only operations often use floating-point

data. For example, depending on the format of the sparse matrix, sparse matrix-
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vector multiplication can require multiple threads to update overlapping elements

of the output vector [35]. However, floating-point operations are not associative or

commutative, and the order of operations can affect the final result in some cases [88].

Common parallel reduction implementations are non-deterministic, so we choose to

support floating-point addition in Coup. Implementations desiring reproducibility

can use slower deterministic reductions in software [51].

Ghost cells: In iterative algorithms that operate on regular data, such as structured

grids, threads often work on disjoint chunks of data and only need to communicate

updates to threads working on neighboring chunks. A common technique is to buffer

updates to these boundary cells using ghost or halo cells [65], private copies of boundary

cells that are updated by each thread during the iteration and read by neighboring

threads in the next iteration. Ghost cells are another form of privatization, different

from reductions in that they capture point-to-point communication. Coup avoids the

overheads of ghost cells by letting multiple threads update boundary cells directly.

The ghost cell pattern is harder to apply to iterative algorithms that operate on

irregular data, such as PageRank [77, 85]. In these cases, partitioning work among

threads to minimize communication can be expensive, and is rarely done on shared-

memory machines [85]. By reducing the cost of concurrent updates to shared data,

Coup helps irregular iterative algorithms as well.

4.2 Interleaved Updates and Reads

Several parallel algorithms read and update shared data within the same phase. Unlike

the applications in Sec. 4.1, software privatization is rarely used in these cases, as

software would need to detect data in update-only mode and perform a reduction

before each read. By contrast, Coup transparently switches cache lines between

read-only and update-only modes in response to accesses, improving performance even

with a few consecutive updates or reads.
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Graph traversals: High-performance implementations of graph traversal algorithms

such as breadth-first search (BFS) encode the set of visited nodes in a bitmap that

fits in cache to reduce memory bandwidth [34, 42]. The first thread that visits a node

sets its bit, and threads visiting neighbors of the node read its bit to find whether the

node needs to be visited.

Existing implementations use atomic-𝑜𝑟 operations to update the bitmap [34], or

use non-atomic load-𝑜𝑟-store sequences, which reduce overheads but miss updates,

causing some nodes to be visited multiple times [42]. In both cases, updates from

multiple threads are serialized. In contrast, Coup allows multiple concurrent updates

to bits in the same cache line.

Besides graph traversals, commutative updates to bitmaps are common in other

contexts, such as recently-used bits in page replacement policies [46], buddy memory

allocation [66], and other graph algorithms [70].

Reference counting: Reference counting is a common automatic memory manage-

ment technique. Each object has a counter to track the number of active references.

Threads increment the object’s counter when they create a reference, and decrement

and read the counter when they destroy a reference, When the reference count reaches

zero, the object is garbage-collected.

Using software techniques to reduce reference-counting overheads is a well-studied

problem [44, 45, 53, 75]. Scalable Non-Zero Indicators (SNZIs) [53] reduce the cost

of non-zero checks. SNZIs keep the global count using a tree of counters. Threads

increment and decrement different nodes in the tree, and may propagate updates to

parent nodes. Readers just need to check the root node to determine whether the

count is zero. SNZIs make non-zero fast and allow some concurrency in increments

and decrements, but add significant space and time overheads, and need to be carefully

tuned.

Refcache [44] delays and batches reads to reference counts, which allows it to use

privatization. Threads maintain a software cache of reference counter deltas, which are

periodically flushed to the global counter. When the global counter stays at zero for a
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sufficiently long time, the true count is known to be zero and the object is deallocated.

This approach reduces reference-counting overheads, but delayed deallocation hurts

memory footprint and locality.

Coup enables shared reference counters with no space overheads and less coherence

traffic than shared counters. When non-zero checks are performed every decrement,

Coup reduces L3 invalidations by 4.6% and L2 invalidations by 1.9% over an atomic-

based implementation. Coup also allows delayed reference count reads as in Refcache

without a software cache.
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Chapter 5

Coup Implementation

We now describe our implementation of Coup, which seeks to accelerate single-word

commutative updates. Multi-word commutative updates are described in chapter 7.

Operations and data types: We support the following operations:

∙ Addition of 16, 32, and 64-bit integers, and 32 and 64-bit floating-point values.

∙ AND, OR, and XOR bit-wise logical operations on 64-bit words.

We observe multiplication update-only operations are rare, so we do not support

multiplication. We also observe 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are often used with scalar reduction

variables (e.g., to find the extreme values of an array). Coup would provide a negligible

benefit for scalar reductions, as discussed in Sec. 4.1. Thus, we do not support 𝑚𝑖𝑛

or 𝑚𝑎𝑥. Finally, we only support one word size for bit-wise operations, because this

suffices to express updates to bitmaps of any size (smaller or larger).

Instructions: We add an instruction for each supported operation and data type.

Each instruction takes two register inputs, with the address to be updated and the

value to apply. These instructions produce no register output. Sec. 6.1 describes how

we model and simulate these instructions in x86-64.

Reduction unit: Each shared cache bank has a reduction unit that can perform

each of the supported operations. Since functional units for the required operations
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Figure 5-1: Architecture of the simulated SMP system we target.

are relatively simple, we assume a 2-stage pipelined, 256-bit ALU (4× 64-bit lanes).

This ALU has a throughput of one full 64-byte cache line per two clock cycles, and a

latency of three clock cycles per line.

Hierarchical organization: We evaluate single- and multi-socket systems with up

to 128 cores and a four-level cache hierarchy, shown in Fig. 5-1. Each processor chip

has 16 cores. Each core has private L1s and a private L2, and all cores in the chip

share a banked level-3 cache with an in-cache directory. The system supports up to 8

processor chips, connected in a dancehall topology to the same number of L4 chips.

Each of these chips contains a slice of the L4 cache and global in-cache directory,

and connects to a fraction of main memory. This organization is similar to the IBM

z13 [90].

To support Coup, L3 and L4 caches use the MEUSI protocol (Fig. 3-4), and each

of their bank has a reduction unit. We perform hierarchical reductions as described in

Sec. 3.2: on a full reduction, each L3 bank invalidates all its children, aggregates their

partial updates, and sends a single response to the L4 controller.

Coup could also be implemented with snoopy L3s or an L3 directory without

an L4 cache. Not having an L4 cache, however, requires either reading memory for

reductions or keeping all the data needed for reductions in the L3 caches. For example,
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with snoopy coherence, each line with multiple sharers in U state can have one of the

sharers act as its owner, similar to the forwarding state in MESIF [57]. This owner

retains the line’s data when it transitions into U instead of initializing it with identity

elements, and, on an eviction from another cache, needs to capture its partial update

and aggregate it to its copy. This is reasonable to do with L3 caches, which already

have a reduction unit.

Hardware overheads: Our Coup implementation introduces the following over-

heads:

1. Eight additional instructions, which reuse the core’s existing machinery for

atomic operations.

2. Additional tag bits per cache line through all the levels of the hierarchy, to

encode additional coherence states and the current update-only operation if the

line is in U state. These take four bits per line in our implementation.

3. One reduction unit per L3 and L4 bank, with support for integer and floating-

point addition and bit-wise logical operations.

These overheads are modest, and allow significant performance gains for a range of

applications.
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Chapter 6

Evaluation

6.1 Methodology

Modeled systems: We perform microarchitectural, execution-driven simulation

using zsim [83], and model parallel systems with a four-level cache hierarchy as

described in chapter 5. We evaluate systems with up to 128 cores (8× 16-core chips).

Table 6.1 details the configuration of this system.

We augment zsim to emulate commutative-update instructions, which we encode

with no-op instructions that are never emitted by the compiler. The simulator detects

these instructions and simulates their functionality. We implement each commutative

update using four 𝜇ops: load-linked, execute (in one of the appropriate execution

ports), store-conditional, and a store-load fence. Conventional atomic operations use

exactly the same 𝜇op sequence in our implementation.

6.2 Case Study: Reference Counting

We use two microbenchmarks to compare Coup’s performance on reference counting

against the software techniques described in Sec. 4.2. The first microbenchmark models

immediate-deallocation schemes, and we use it to compare against a conventional

atomic-based implementation and SNZI [53]. The second microbenchmark models

delayed-deallocation schemes, and we use it to compare against Refcache [44].
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ip Cores 1–128 cores, 16 cores/processor chip, x86-64 ISA,
2.4 GHz, Nehalem-like OOO [83]

L1
caches

32 KB, 8-way set-associative, split D/I, 4-cycle
latency

L2
caches

256 KB private per-core, 8-way set-associative,
inclusive, 7-cycle latency

L3
caches

32 MB, 8 banks, 16-way set-associative, inclusive,
27-cycle latency, in-cache directory

Off-chip
network

Dancehall topology with 40-cycle point-to-point
links between each pair of processor and L4 chips

L4 & dir
chip

128 MB, 8 banks/chip, 16-way set-associative,
inclusive, 35-cycle latency, in-cache directory

Coherence MESI/MEUSI, 64 B lines, no silent drops

Main
memory

4 DDR3-1600-CL10 channels per L4 chip, 64-bit
bus, 2 ranks/channel

Table 6.1: Configuration of the simulated SMP (Fig. 5-1).

1 32 64 96 128
Cores

0
10
20
30
40
50
60
70
80
90

S
pe

ed
up

COUP

SNZI

XADD

(a) Immediate dealloc,
low count

1 32 64 96 128
Cores

0
10
20
30
40
50
60
70
80
90

S
pe

ed
up

COUP

SNZI

XADD

(b) Immediate dealloc,
high count

0 200 400 600 800 1000
Updates per epoch per core

0

50

100

150

200

P
er

fo
rm

an
ce

COUP

Refcache

(c) Delayed dealloc

Figure 6-1: Performance of Coup on reference counting microbenchmarks: immediate
deallocation (a, b) and delayed deallocation (c).

Immediate deallocation: In this microbenchmark, each thread performs a fixed

number of increment, decrement, and read operations over a fixed number of shared

reference counters. We use 1 to 128 threads, 1 million updates per thread, and 1024

shared counters. On each iteration, a thread selects a random counter and performs

either an increment or a decrement and read.

SNZI uses binary trees with as many leaves as threads. The performance of SNZI

depends on the number of references per object—a higher number of references causes

higher surpluses in leaves and intermediate nodes, and less contention on updates. To

capture this effect, we run two variants of this benchmark. In the first variant (low

count), each thread keeps only 0 or 1 references per object, while in the second mode

(high count), each thread keeps up to five references per object.

To achieve this, in low-count mode, when a thread randomly selects an object, it

will always increment its counter if it holds no references to that object, and it will
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always decrement its counter if it holds one reference. In high-count mode, threads

will increment with probability 1.0, 0.7, 0.5, 0.5, 0.3, and 0.0 if they hold 0, 1, 2, 3, 4,

and 5 local references to that counter, respectively.

For updates, Coup uses commutative add instructions, and XADD uses atomic

fetch-and-add instructions.

Fig. 6-1a and Fig. 6-1b show the results of these experiments. In the low-count

variant (Fig. 6-1a), SNZI incurs high overhead when the counts drop to zero, so

both Coup and XADD outperform SNZI (by 50% and 17%, respectively). Coup

outperforms XADD because the MEUSI protocol enables multiple cores to update

lines. By contrast, in the high-count variant (Fig. 6-1b), SNZI enjoys lower contention

and outperforms Coup (by 35% at 128 cores).

We conclude that, in high-contention scenarios, Coup provides the highest perfor-

mance, but in specific scenarios, software optimizations that exploit application-specific

knowledge to avoid contention among reads and updates can outperform Coup. We

also note that it may be possible to modify SNZI to take advantage of Coup and

combine the advantages of both techniques.

Delayed deallocation: In the delayed-deallocation microbenchmark, 128 threads

perform increments and decrements (but not reads) on 100,000 counters. We divide

the benchmark into epochs, each with a given number of updates per thread. When

they finish an epoch, threads check whether counters are zero, simulating delayed-

deallocation periods as in Refcache [44].

Our Coup implementation works by updating counters with commutative add

instructions and maintaining a bitmap with “modified” bits for each counter. The

bitmap is updated with commutative OR instructions. Between epochs, cores use

ordinary loads to read the value of marked counters and check whether the counters

are zero. Refcache uses a per-thread software cache (a hash table) to maintain the

deltas to each modified counter. Threads flush this cache when they finish each epoch.

Fig. 6-1c shows the performance Coup and Refcache on the delayed deallocation

microbenchmark as the number of updates per epoch (x -axis) grows from 1 to 1000
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Figure 6-2: Sensitivity to ALU throughput at 128 cores.

updates per thread and epoch. Coup outperforms refcache across the range, by up to

2.3×.

We conclude that Coup primarily helps delayed-deallocation reference counting by

allowing a simpler, lower-overhead implementation to capture the low communication

costs of prior software approaches (in this case, using counters and bitmaps instead of

hash tables).

6.3 Sensitivity to Reduction Unit Throughput

Fig. 6-2 shows the performance of Coup on 128-core systems with three different

ALU implementations: the default 256-bit ALU, which has a throughput of one cache

line per 2 cycles; a non-data-parallel, 64-bit ALU, with a throughput of one line

per 8 cycles; and an unpipelined 64-bit ALU with a throughput of one line per 16

cycles. Each set of bars show performance for a single application. Each bar shows

performance relative to the default ALU; higher numbers are better. Fig. 6-2 shows

that ALU thoughput has a minor impact on system performance. The maximum

performance degradation incurred with simpler ALUs is 0.88% (on bfs).
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Chapter 7

Multi-word Operations

In principle, in addition to the single-word operations described in chapter 5, Coup

can support complex, multi-word operations . For example, many multicore workflows

use work-stealing algorithms and thread-caching data structures to increase their

performance. Such operations typically involve privatizing sets on each core, with

periodic or lazy operations to maintain coherence. These workflows are a natural fit

for Coup.

For this project, we implemented functional simulation of commutative set opera-

tions in Coup, though a detailed performance analysis is deferred to future work.

7.1 Set Representation

We support sets whose elements are 64-bit words. A set is represented by an ordinary,

contiguous block of memory set up by software. Sets must be cache-aligned and their

size must be a multiple of a single cache line so that reduction units at caches can

correctly manage set membership.

Software interacts with sets through push and pop operations. These operations

require a pointer which points to the descriptor for a set. Each descriptor contains

the following fields:

∙ base (8 byte): the fixed memory address of the beginning of the set.
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∙ limit (8 bytes): the fixed memory address of the end of the set.

∙ head (8 bytes): a pointer to the beginning of a region of the set.

∙ tail (8 bytes): a pointer to the end of a region of the set.

∙ flags (1 byte): A bit-field with internal state for the set, including whether it

has been initialized yet or not.

∙ reserved (1 bytes): Application specific data reserved for software use.

Once software has initialized a descriptor and a contiguous block of memory for a

set, it can update the set with two new instructions, which we describe next.

7.2 ISA Extensions for Sets

Sets provide two update-only operations, insert and delete. Because our sets support

64-bit words, we can implement these operations in one instruction each (pushl and

popl, respectively). These instructions each take a pointer to a set descriptor. pushl

additionally accepts a literal 64-bit word to add to the set.

An error code indicating the status of the operation is written to a register at the

end of execution. For popl operations, the word extracted from the set is written to a

separate register.

7.3 Proposed Implementation

These instructions could be implemented by placing specialized programmable con-

trollers next to the reducers described in chapter 5. These controllers would support

set operations that require communication between cores (for example, if a core’s local

set is empty and it needs to return an element that is cached elsewhere in reply to a

popl operation).

In this scenario, cores would keep a local copy of the set descriptor cached in U

state, which supports both pushl and popl instructions.
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The details of how controllers would balance set membership between cores, as

well as a properly detailed discussion of a micro-architectural implementation, are

both deferred to future work.

7.4 Commutative Memory Allocation

Many popular memory allocators, like TCMalloc [98], pin software caches of free

blocks in each core. Because memory allocators typically keep blocks in bins of fixed

sizes (e.g. powers of two), these caches must be replicated across cores. If a cache

becomes empty, cores must “borrow” free blocks of the same size from another core,

or demote and split a larger block from its own core, increasing fragmentation.

Coup with sets provides automatic coherence for these per-core caches. In our

memory allocator, we use commutative sets of fixed sizes (powers of two) to keep

pointers to free blocks. Allocating and freeing memory correspond to popping and

pushing pointers into the correspondingly-sized commutative set. This approach avoids

the software overhead required to maintain per-core caches, benefiting from the same

reduction in complexity as the applications described in chapter 4.

7.5 Future Work for Multi-word Operations

Using the set extensions described above, we plan to implement commutative work-

stealing queues and a more optimized commutative memory allocator. With a more

detailed study of the micro-architectural requirements to efficiently support this

interface, we can evaluate the performance benefits under simulation.
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Chapter 8

Conclusion

Coup is a technique that exploits commutativity to reduce the cost of updates in

cache-coherent systems. It extends conventional coherence protocols to allow multiple

caches to simultaneously hold update-only permissions to data. We have introduced an

implementation of Coup that uses this support to accelerate single-word commutative

updates. This implementation requires minor hardware additions and, in return,

substantially improves the performance of update-heavy applications. Beyond this

specific implementation, a key contribution of our work is to recognize that it is possible

to allow multiple concurrent updates without sacrificing cache coherence or relaxing

the consistency model. Thus, Coup attains performance gains without complicating

parallel programming. Finally, Coup can apply to other contexts, including the

multi-word set operations described in chapter 7, with limited programmability in the

cache controller. We leave this and other applications of Coup to future work.

49



50



Bibliography

[1] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma, and
M. Soni, “Read-copy update,” in AUUG Conference Proceedings, 2001.

[2] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler, “The
scalable commutativity rule: Designing scalable software for multicore processors,”
in Proc. SOSP-24, 2013.

[3] N. Narula, C. Cutler, E. Kohler, and R. Morris, “Phase reconciliation for contended
in-memory transactions,” in Proc. OSDI-11, 2014.

[4] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and
M. Snir, “The NYU Ultracomputer: Designing an MIMD Shared Memory Parallel
Computer,” IEEE Transactions on Computers, vol. 100, no. 2, 1983.

[5] S. L. Scott, “Synchronization and communication in the T3E multiprocessor,” in
Proc. ASPLOS-VII, 1996.

[6] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store programming,” in
Proc. HiPEAC, 2010.

[7] L. Zhang, Z. Fang, and J. B. Carter, “Highly efficient synchronization based on
active memory operations,” in Proc. IPDPS, 2004.

[8] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri,
S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: an architecture and scalable
programming interface for a 1000-core accelerator,” in Proc. ISCA-36, 2009.

[9] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter, and C.-T. Chou, “Denovo: Rethinking the memory hierarchy
for disciplined parallelism,” in Proc. PACT-20, 2011.

[10] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and L. Shannon,
“Amoeba-cache: Adaptive blocks for eliminating waste in the memory hierarchy,”
in Proc. MICRO-45, 2012.

[11] G. Kurian, Locality-aware Cache Hierarchy Management for Multicore Processors.
PhD thesis, Massachusetts Institute of Technology, 2014.

51



[12] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,”
IEEE Computer, vol. 29, no. 12, 1996.

[13] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory consistency and
cache coherence,” Synthesis Lectures on Computer Architecture, vol. 6, no. 3,
2011.

[14] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Sto-
ica, “Coordination avoidance in database systems,” Proceedings of the VLDB
Endowment, vol. 8, no. 3, 2014.

[15] R. E. Kessler and J. L. Schwarzmeier, “CRAY T3D: A new dimension for Cray
Research,” in Proc. COMPCON, 1993.

[16] J. Laudon and D. Lenoski, “The SGI Origin: a ccNUMA highly scalable server,”
in Proc. ISCA-24, 1997.

[17] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU architecture,”
IEEE Micro, vol. 31, no. 2, 2011.

[18] J. H. Ahn, M. Erez, and W. J. Dally, “Scatter-add in data parallel architectures,”
in Proc. HPCA-11, 2005.

[19] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing coherence
overhead in shared-memory multiprocessors,” in Proc. ISCA-22, 1995.

[20] S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Tempest and Typhoon: User-level
shared memory,” in Proc. ISCA-21, 1994.

[21] D. Brooks and M. Martonosi, “Implementing application-specific cache-coherence
protocols in configurable hardware,” in Proc. CANPC, 1999.

[22] H. Zhao, A. Shriraman, S. Kumar, and S. Dwarkadas, “Protozoa: Adaptive
granularity cache coherence,” in Proc. ISCA-40, 2013.

[23] J. Zebchuk, E. Safi, and A. Moshovos, “A framework for coarse-grain optimizations
in the on-chip memory hierarchy,” in Proc. MICRO-40, 2007.

[24] S. Franey and M. Lipasti, “Accelerating atomic operations on GPGPUs,” in Proc.
of the 7th IEEE/ACM International Symposium on Networks on Chip (NoCS),
2013.

[25] K. Russell and D. Detlefs, “Eliminating synchronization-related atomic operations
with biased locking and bulk rebiasing,” in Proc. OOPSLA, 2006.

[26] I. J. Egielski, J. Huang, and E. Z. Zhang, “Massive atomics for massive parallelism
on GPUs,” in Proceedings of the 2014 international symposium on Memory
management, 2014.

52



[27] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama: An
efficient matrix computation with the mapreduce framework,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference
on, 2010.

[28] W. Jung, J. Park, and J. Lee, “Versatile and scalable parallel histogram construc-
tion,” in Proc. PACT-23, 2014.

[29] F. Ellen, Y. Lev, V. Luchangco, and M. Moir, “Snzi: Scalable nonzero indicators,”
in Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing, pp. 13–22, ACM, 2007.

[30] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Mor-
ris, N. Zeldovich, et al., “An analysis of linux scalability to many cores.,” in OSDI,
vol. 10, pp. 86–93, 2010.

[31] J. Corbet, “The search for fast, scalable counters,” May 2010.
http://lwn.net/Articles/170003/.

[32] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Radixvm: Scalable address
spaces for multithreaded applications,” in Proceedings of the 8th ACM European
Conference on Computer Systems, pp. 211–224, ACM, 2013.

[33] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,”
IEEE Computer, vol. 29, no. 12, 1996.

[34] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph exploration
on multicore processors,” in Proc. SC10, 2010.

[35] J. H. Ahn, M. Erez, and W. J. Dally, “Scatter-add in data parallel architectures,”
in Proc. HPCA-11, 2005.

[36] A. R. Alameldeen and D. A. Wood, “IPC considered harmful for multiprocessor
workloads,” IEEE Micro, vol. 26, no. 4, 2006.

[37] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica,
“Coordination avoidance in database systems,” Proc. VLDB, vol. 8, no. 3, 2014.

[38] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite:
Characterization and architectural implications,” in Proc. PACT-17, 2008.

[39] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. Marathe, and M. Moir,
“Message passing or shared memory: Evaluating the delegation abstraction for
multicores,” in Principles of Distributed Systems, 2013.

[40] I. Calciu, J. E. Gottschlich, and M. Herlihy, “Using elimination and delegation to
implement a scalable NUMA-friendly stack,” in Proc. HotPar, 2013.

[41] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS directories: A scalable
cache coherence scheme,” in Proc. ASPLOS-IV, 1991.

53



[42] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast and efficient graph
traversal algorithm for cpus: Maximizing single-node efficiency,” in Proc. IPDPS,
2012.

[43] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter, and C.-T. Chou, “Denovo: Rethinking the memory hierarchy
for disciplined parallelism,” in Proc. PACT-20, 2011.

[44] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “RadixVM: Scalable address
spaces for multithreaded applications,” in Proc. EuroSys, 2013.

[45] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler, “The
scalable commutativity rule: Designing scalable software for multicore processors,”
in Proc. SOSP-24, 2013.

[46] F. J. Corbato, “A Paging Experiment with the Multics System,” in MIT Project
MAC Report MAC-M-384, 1968.

[47] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction
to OpenCV,” in MIPRO, 2012 Proceedings of the 35th International Convention,
2012.

[48] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a
hardware/software approach. Gulf Professional Publishing, 1999.

[49] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,”
ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, 2011.

[50] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” in Proc. OSDI-6, 2004.

[51] J. Demmel and H. D. Nguyen, “Fast reproducible floating-point summation,” in
Computer Arithmetic (ARITH), 2013 21st IEEE Symposium on, 2013.

[52] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP task scheduling
strategies,” in 4th Intl. Workshop in OpenMP, 2008.

[53] F. Ellen, Y. Lev, V. Luchangco, and M. Moir, “SNZI: Scalable nonzero indicators,”
in Proc. PODC, 2007.

[54] A. Fraknoi, “Images on the web for astronomy teaching: Image repositories,”
Astronomy Education Review, vol. 7, no. 1, 2008.

[55] S. Franey and M. Lipasti, “Accelerating atomic operations on GPGPUs,” in Proc.
of the 7th IEEE/ACM International Symposium on Networks on Chip (NoCS),
2013.

[56] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin, “Reducers and other
Cilk++ hyperobjects,” in Proc. SPAA, 2009.

54



[57] J. Goodman and H. Hum, “MESIF: A Two-Hop Cache Coherency Protocol for
Point-to-Point Interconnects,” 2009.

[58] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and
M. Snir, “The NYU Ultracomputer: Designing an MIMD Shared Memory Parallel
Computer,” IEEE Trans. Comput., vol. 100, no. 2, 1983.

[59] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store programming,” in
Proc. HiPEAC, 2010.

[60] Intel, “TBB http://www.threadingbuildingblocks.org.”

[61] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August, “Speculative
separation for privatization and reductions,” in Proc. PLDI, 2012.

[62] W. Jung, J. Park, and J. Lee, “Versatile and scalable parallel histogram construc-
tion,” in Proc. PACT-23, 2014.

[63] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri,
S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: an architecture and scalable
programming interface for a 1000-core accelerator,” in Proc. ISCA-36, 2009.

[64] R. E. Kessler and J. L. Schwarzmeier, “CRAY T3D: A new dimension for Cray
Research,” in Proc. COMPCON, 1993.

[65] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proc. of the 2010 Workshop
on Parallel Programming Patterns, 2010.

[66] K. C. Knowlton, “A fast storage allocator,” Comm. ACM, no. 8, 1965.

[67] C. H. Koelbel, The high performance Fortran handbook. MIT Press, 1994.

[68] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and L. Shannon,
“Amoeba-cache: Adaptive blocks for eliminating waste in the memory hierarchy,”
in Proc. MICRO-45, 2012.

[69] G. Kurian, “Locality-aware Cache Hierarchy Management for Multicore Proces-
sors,” Ph.D. dissertation, Massachusetts Institute of Technology, 2014.

[70] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: Large-Scale Graph
Computation on Just a PC.” in Proc. OSDI-10, 2012.

[71] J. R. Larus, B. Richards, and G. Viswanathan, “LCM: Memory system support
for parallel language implementation,” in Proc. ASPLOS-VI, 1994.

[72] J. Laudon and D. Lenoski, “The SGI Origin: a ccNUMA highly scalable server,”
in Proc. ISCA-24, 1997.

[73] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing coherence
overhead in shared-memory multiprocessors,” in Proc. ISCA-22, 1995.

55

http://www.threadingbuildingblocks.org


[74] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-first search
algorithm (or how to cope with the nondeterminism of reducers),” in Proc. SPAA,
2010.

[75] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-free objects,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 15, no. 6, 2004.

[76] N. Narula, C. Cutler, E. Kohler, and R. Morris, “Phase reconciliation for contended
in-memory transactions,” in Proc. OSDI-11, 2014.

[77] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:
Bringing order to the web.” 1999.

[78] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution for
multiprocessors with private cache memories,” in Proc. ISCA-11, 1984.

[79] L. Rauchwerger and D. Padua, “The privatizing doall test: A run-time technique
for doall loop identification and array privatization,” in Proc. ICS’94, 1994.

[80] L. Rauchwerger and D. A. Padua, “The LRPD test: Speculative run-time paral-
lelization of loops with privatization and reduction parallelization,” IEEE Trans.
on Parallel and Distributed Systems, vol. 10, no. 2, 1999.

[81] S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Tempest and Typhoon: User-level
shared memory,” in Proc. ISCA-21, 1994.

[82] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory with flexible
sharer set encoding,” in Proc. HPCA-18, 2012.

[83] D. Sanchez and C. Kozyrakis, “ZSim: fast and accurate microarchitectural simu-
lation of thousand-core systems,” in Proc. ISCA-40, 2013.

[84] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural support for
fine-grain scheduling,” in Proc. ASPLOS-XV, 2010.

[85] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan,
S. Sengupta, Z. Yin, and P. Dubey, “Navigating the maze of graph analytics
frameworks using massive graph datasets,” in Proc. SIGMOD, 2014.

[86] S. L. Scott, “Synchronization and communication in the T3E multiprocessor,” in
Proc. ASPLOS-VII, 1996.

[87] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory consistency and
cache coherence,” Synthesis Lectures on Computer Architecture, vol. 6, no. 3,
2011.

[88] O. Villa, D. Chavarrıa-Miranda, V. Gurumoorthi, A. Márquez, and S. Krish-
namoorthy, “Effects of floating-point non-associativity on numerical computations
on massively multithreaded systems,” Cray User Group, 2009.

56



[89] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active messages:
a mechanism for integrated communication and computation,” in Proc. ISCA-19,
1992.

[90] J. Warnock, B. Curran, J. Badar, G. Fredeman, D. Plass, Y. Chan, S. Carey,
G. Salem, F. Schroeder, F. Malgioglio et al., “22nm Next-generation IBM System
z microprocessor,” in Proc. ISSCC, 2015.

[91] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU architecture,”
IEEE Micro, vol. 31, no. 2, 2011.

[92] H. Wong, A. Bracy, E. Schuchman, T. M. Aamodt, J. D. Collins, P. H. Wang,
G. Chinya, A. K. Groen, H. Jiang, and H. Wang, “Pangaea: a tightly-coupled
IA32 heterogeneous chip multiprocessor,” in Proc. PACT-17, 2008.

[93] H. Yu and L. Rauchwerger, “Adaptive reduction parallelization techniques,” in
Proc. ICS’00, 2000.

[94] J. Zebchuk, M. K. Qureshi, V. Srinivasan, and A. Moshovos, “A tagless coherence
directory,” in Proc. MICRO-42, 2009.

[95] J. Zebchuk, E. Safi, and A. Moshovos, “A framework for coarse-grain optimizations
in the on-chip memory hierarchy,” in Proc. MICRO-40, 2007.

[96] L. Zhang, Z. Fang, and J. B. Carter, “Highly efficient synchronization based on
active memory operations,” in Proc. IPDPS, 2004.

[97] H. Zhao, A. Shriraman, S. Kumar, and S. Dwarkadas, “Protozoa: Adaptive
granularity cache coherence,” in Proc. ISCA-40, 2013.

[98] Ghemawat, Sanjay and Menage, Paul, “Tcmalloc: Thread-caching malloc,” at
goog-perftools.sourceforge.net/doc/tcmalloc.html, 2009.

57


	Introduction
	Background
	Hardware Techniques
	Software Techniques

	Extending Cache Coherence to Support Commutative Updates
	Coup Example: Extending MSI
	Structural changes
	Protocol operation

	Generalizing Coup
	Coherence and Consistency

	Motivating Applications
	Separate Update- and Read-Only Phases
	Interleaved Updates and Reads

	Coup Implementation
	Evaluation
	Methodology
	Case Study: Reference Counting
	Sensitivity to Reduction Unit Throughput

	Multi-word Operations
	Set Representation
	ISA Extensions for Sets
	Proposed Implementation
	Commutative Memory Allocation
	Future Work for Multi-word Operations

	Conclusion

